SEMESTER – I

<u>Core course I : Microbiology and Phycology</u> (Credits : Theory-4, Practical -2)

THEORY

Lectures: 60

Full Marks: 60 Time: 03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: VIRUSES (8 lectures)

Discovery, living & non-living characterization, general structure with special reference to bacteriophage and TMV.

UNIT 2: BACTERIA (8 lectures)

Discovery, general characteristics, mycoplasma, cell structures and reproduction

UNIT 3: APPLIED MICROBIOLOGY (4 lectures)

Economic importance of bacteria with reference to their role in agriculture and industry (fermentation and medicine).

UNIT 4: ALGAE (8 lectures)

General characteristics; Classification proposed by Fritsch.

UNIT 5: CYANOPHYTA (5 lectures)

General characteristics, morphology and life cycle of *Nostoc*.

UNIT 6: CHLOROPHYTA (6 lectures)

General characteristics; morphology and life cycle of Volvox and Oedogonium.

UNIT 7: CHAROPHYTA (2 lectures)

General characteristics; morphology and life cycle of Chara.

UNIT 8: XANTHOPHYTA (3 lectures)

General characteristics; morphology and life cycle of Vaucheria.

UNIT 9: PHAEOPHYTA (6 lectures)

General characteristics; morphology and life cycle of *Ectocarpus*.

UNIT 10: RHODOPHYTA (6 lectures)

General characteristics; morphology and life cycle of Batrachospermum.

UNIT 11: APPLIED PHYCOLOGY (4 lectures)

Economic importance of algae.

Suggested readings

- 1. Vashishishta, B.R., Singh, V.P., and Sinha A.K.(2014) Botany for Degree Students (Algae) S.Chand& Company Ltd.
- 2. Gangulee, H.C. and Kar, A.K. 2012, College Botany Volume-II
- 3. Lee, R.E. (2008), Phycology, Cambridge university Press, Cambridge. 4th edition.
- 4. Prescott, L.M., Harley J.P., Klein D.A. (2005), Microbiology, McGraw Hill, India. 6th edition.
- 5. Kumar, H.D. (1999). Introductory Phyology, affiliated East-West Press, Delhi.
- 6. Pelczar, M.J, (2001) Microbiology, 5th edition, Tata McGraw-hill co, New Delhi.
- 7. Sharma, P.D. (2014) Microbiology. Rastogi Publication, Meerut

<u>Core Courses II : Biomolecules and cell</u> (Credits : Theory-4, Practical-2)

THEORY

Lectures: 60

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

BIOMOLECULES (22 lectures)

Unit 1: Carbohydrates: Nomenclature and classification, Role of monosaccharides, disaccharides, oligosaccharides and polysaccharides.

Unit 2: Proteins :Structures of amino acids; Protein structure – primary, secondary, tertiary and quaternary; biological roles of proteins.

Unit 3:Nucleic acids: Structure of nitrogenous bases; Structure and function of nucleotide; types of nucleic acids; structure of B-DNA, Compare with Z- DNA; Types of RNA; structure of tRNA.

UNIT 4: ENZYMES (6 lectures)

Definition, History of its discovery, Structure of enzyme: holoenzyme, apoenzyme. Prosthetic group, Cofactors, mechanism of enzyme action. Factors affecting enzyme activity.

UNIT 5: THE CELL (4 lectures)

Ultra structure of prokaryotic and eukaryotic cell.

CELL WALL, PLASMA MEMBRANE & NUCLEUS

(8 lectures)

Chemistry, Structure and Function of plant cell wall, Plasma Membrane and Nucleus.

CELL ORGANELLES

(12 lectures)

Chloroplast, Mitochondria, Peroxisome, Endoplasmic reticulum, Golgi Apparatus, Lysosomes and Ribosomes: Structure & Functions.

UNIT 5: CELL DIVISION

(8 lectures)

Mitosis, Meiosis and cancer.

Suggested Readings

- 1. Camphell, MK (2012) Biochemistry, 7th ed., published by Cengage Learning.
- 2. Camphell, PN and Smith AD (2011) Biochemistry illustrated, 4th ed., Published by Churchill Livingstone.
- 3. Tymoezko JL, Berg JM and Stryer L (2012) Biochemistry; A short course, 2nd ed. W.H.Freeman.
- 4. Berg JM, Tymoezko JL, and Stryer L (2011) Biochemistry, W.H.Freeman and Company.
- 5. Nelson DL and Cox MM (2008) Lehninger Principles of Biochemistry, 5th ed. W.H. Freeman and Company.
- 6. Karp, G.(2010), Cell Biology, John Wiley & Sons, U.S.A. 6th edition.
- 7. Hardin, J., Becker, G., Skliensmith, L.J, (2012), Becker's World of the Cell, Pearson Education Inc. U.S.A. 8th edition.
- 8. Cooper, G.M, and Hausman, R.E. 2009 The Cell: A Molecular Approach, 5th edition, ASM Press & Sunderland, Washington, D.C, Sinauer Associates, MA.
- 9. Becker, W.M, Kleinsmith, L.J., Hardin, J. and Bertoni, G.P. 2009 The World of the cell, 7thedition, Pearson Benjamin Cummings Publishing, San Francisco.

PRACTICAL F.M. – 40

Microbiology

- 1. Structure of Bacteriophage and TMV by photographs.
- 2. Forms of Bacteria by slides/photographs.
- 3. Gram staining technique.

Phycology

- 4. Study of vegetative and reproductive structures of *Nostoc*, *Volvox*, *Oedogonium*, *Chara*, *Vaucheria*, *Ectocarpus* and *Batrachospermum* by preparing temporary slides and also by permanent slides.
- 5. Qualitative tests for carbohydrates and proteins.

6. Study of different stages of mitosis and meiosis by preparing temporary slides & also by permanent slides.

Examination F.M.40 Time- 3 hrs

1. Preparation of temporary slides of any one algae included in the syllabus -10

2. Biochemical test of carbohydrates or protein - 5

3. Spotting 2x5 - 10
4. Viva -07
5. Class record & collection - 8

SEMESTER – II CORE COURSE III: Mycology and Phytopathology (Credits : Theory-4, Practical -2) THEORY

Lectures: 60 Full marks: 60

Time:03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: INTRODUCTION TO TRUE FUNGI (6 lectures)

Definition, General characteristics and Classification by Ainsworth.

UNIT 2: MASTIGOMYCOTINA (4 lectures)

General account and Life cycle of Synchytrium and Phytophthora.

UNIT 3: ZYGOMYCOTINA (2 lectures)

Generalcharacteristics and Life Cycle of Albugo

UNIT 4: ASCOMYCOTINA

(10

lectures)

General characteristics and life cycle of Peziza.

UNIT 5: BASIDIOMYCOTINA

(8 lectures)

General characteristics and life cycle of *Puccinia*.

UNIT 6: ALLIED GROUP

(2 lectures)

General characteristics of Slime molds.

UNIT 7: DEUTEROMYCOTINA

(4 lectures)

General characteristics and Life cycle of Alternaria and Cercospora.

UNIT 8: SYMBIOTIC ASSOCIATIONS

(4 lectures)

Lichen – Occurrence; General characteristics; and types and Economic Importance.

UNIT 9: APPLIED MYCOLOGY

(10

lectures)

Application of fungi in food industry (Fermentation, Organic acids, enzymes, antibiotics); IPM and Biopesticides.

UNIT10: PHYTOPATHOLOGY

(10 lectures)

General symptoms; etiology and control of following diseases-

- 1. Citrus canker
- 2. Loose smut of wheat
- 3. Red rot of sugarcane
- 4. Early blight of potato
- 5. White rust of crucifer

Suggested Reading

- 1. Agrios, G.N. 1997 Plant Pathology, 4th edition, Academic Press, U.K.
- 2. Alexopoulos, C.J., Mims, C.W, Blackwell, M.(1996). Introductory Mycology, John Wiley & Sons (Asia) Singapore, 4th edition.
- 3. Webster, J. and Weber, R.(2007), Intoduction to Fungi, Cambridge University Press, Cambridge, 3rd edition.
- 4. Sethi, I.K. and Walia, S.K.(2011). Textbook of Fungi and their Allies, Macmillan Publishers India Ltd.
- 5. Sharma, P.D, (2011), Plant Pathology, Rastogi Publication, Meerut, India.

CORE COURSE IV :Archegoniate (Credits : Theory-4, Practical -2) THEORY

Lectures: 60

Full marks: 60 Time: 03Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: BRYOPHYTES

(20 lectures)

General characteristics and life cycle of

- 1. Marchantia
- 2. Anthoceros
- 3. Sphagnum
- 4. Evolution of Gametophyte and Sporophyte in Bryophytes.
- 5. Economic importance of bryophytes.

UNIT 2: PTERIDOPHYTA

(20 lectures)

- A) General characteristics of Pteridophytes
- B) Classification, Morphology, Anatomy and Reproduction(developmental stages not included) of
- 1. Rhynia
- 2. Lycopodium
- 3. Selaginella
- 4. Equisetum
- C) Apogamy and Apospory
- D) Heterospory and Seed habit
- E) Stelar evolution.

UNIT 3: GYMNOSPERMS

(20 lectures)

General characteristics of gymnosperms

Morphology, Anatomy and Reproduction (Developmental details not to be included) of

- 1. Pinus and
- 2. Gnetum

Suggested Reading

- 1. Vashistha, P.C., Sinha, A.K.Kumar, A.(2010), Pteridophyta. S.Chand, Delhi, India.
- 2. Bhatnagar, S.P. & Moitra, A.(1996), Gymnosperms, New Age International (P) Ltd Publishers, New Delhi, India.
- 3. Parihar, N.S, (1991), An introduction to Embryophyta : Vol. 1. Bryophyta, Cental Book Deposit, Allahabad.

- 4. Raven, P.H., Johnson, G.B.Losos, J.B., Singer, S.R. (2005), Biology, Tata McGraw Hill, Delhi.
- 5. Vander poorteri 2009 Introduction to Bryophyta, COP.
- 6. Prasad, C. (2013) An Introduction to Pteridophyta, Emkay Publication, New Delhi, India.

Practical F.M. 40marks

- 1. Study of All genus of fungi, Bryophyta, Pteridophytes and Gymnosperm (included in the syllabus) by preparing temporary slides and by permanent slides.
- 2. Study of different forms of lichen by photographs
- 3. Identification of disease (included in syllabus)

EXAMINATION F.M. 40marks Time- 3hrs

- 1. Preparation of temporary slides of any one genus (included in syllabus)-10
- 2. Disease identification (Any two disease included in syllabus)
 - a. Name of disease
 - b. Name of host

	c. Name of agent	$2x \ 2^{1/2}$	- 05
3.	Spotting –	5x2	-10
4.	Viva		- 07
5.	Class records, collection & models		- 08

<u>SEMESTER - III</u>

Core Course V: Anatomy of Angiosperms (Credits: Theory-4, Practical -2)

THEORY

Lectures: 60 Full marks: 60

Time:03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

INTRODUCTION AND SCOPE OF PLANT ANATOMY

(2 lectures)

UNIT 1: TISSUES

(14 lectures)

Classification of tissues: Simple and complex tissues and secretary time.

UNIT 2: STEM

(8 lectures)

Types of vascular bundles: Structure of dicot and monocot stem.

UNIT 3: LEAF

(6 lectures)

Structure of dicot and monocot leaf.

UNIT 4: ROOT

(8 lectures)

Structure of dicot and monocot root.

UNIT 5: VASCULAR CAMBIUM

(10 lectures)

Structure, function and seasonal activity of cambium, Anomalous secondary growth in *Boerhaavia* and *Dracaena*.

UNIT 6: PERIDERM

(4 lectures)

Development and composition of periderm, Lenticels and rhytidome. Sapwood, Heartwood, early & late wood, tyloses.

UNIT 7: ADAPTIVE AND PROTECTIVE SYSTEMS (6 lectures)

Epidermal tissue system, cuticle, stomata, trichomes, Anatomical adaptation of xerophytes & hydrophytes.

Suggested Readings

- 1. Dickison, W.C.(2000). Integrative plant Anatomy. Harcourt Academic Press, USA.
- 2. Fahn. A.(1974), Plant Anatomy, Pergmon Press. USA
- 3. Mauseth, J.D.(1998), Plant Anatomy. The Berjammin/ Cummings Publisers, USA.
- 4. Esau. K.(1977). Anatomy of seed plants. John Wiley & Sons. Inc., Delhi.

Core Course VI :ECONOMIC BOTANY (Credits : Theory-4, Practical -2)

THEORY

Lectures: 60 Full marks: 60

Time: 03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: CEREALS

(6 lectures)

Wheat & Rice.

Unit 2: LEGUMES

(6 lectures)

Arhar, Pea, Gram & Moong

UNIT 3: SPICES

(8 lectures)

Fennel, saffron, clove, black pepper.

UNIT 4: BEVERAGES

(6 lectures)

Tea

UNIT 5: OIL AND FATS

(8 lectures)

Groundnut, Linseed and Brassica and coconut.

UNIT 6: DRUGS-YIELDING PLANTS(6 lectures)

Rauvolfia, Azadiracta, Ocimum, Papaver, Emblica, Aloe

UNIT 7: PLANT DRUG ABUSE

(6 lectures)

Opoids, & cocaine.

UNIT 8: TIMBER PLANTS

(6 lectures)

Teak, Shisham& Sal.

UNIT 9: FIBRES

(6 lectures)

Cotton & Jute.

UNIT 10: SUGAR YIELDING PLANTS

(2 lectures)

Sugarcane.

Suggested Readings

- 1. Kochhar, S.L., (2012). Economic Botany in Tropics, MacMillan & Co. New Delhi, India.
- 2. Wickens, GE. (2001), Economic Botany: Principles & Practices, Kluwer Academic Publishers, The Netherlands.
- 3. Chrispeels. M.J. and Sadava. D.E. (2003). Plants, Genes and Agriculture, Jones & Bartlett. Publishers.

<u>Core Course VII :GENETICS</u> (<u>Credits : Theory-4, Practical -2</u>)

THEORY Lectures: 60

Full marks: 60 Time: 03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: MENDELIAN GENETICS & ITS EXTENSION (18 lectures)

Mendel's laws of inheritance, Incomplete dominance and co-dominance, Epistatis, Complementary and Duplicate genes.

UNIT 2: EXTRACHROMOSOMAL INHERITANCE (8 lectures)

Cytoplasmic inheritance: Variation in four O'clock plant & infective heredity- In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

Kappa particles in Paramecium.

UNIT 3: LINKAGE AND CROSSING OVER (12 lectures)

Mechanism and significance of Linkage and crossing over

UNIT 4: VARIATION IN CHROMOSOME NUMBER & STRUCTURE (8 lectures)

Deletion, Duplication, Inversion, Translocation, Euploidy, Aneuploidy, origin of *Rhapho-brassica & Triticale*.

UNIT 5: GENE MUTATIONS (8 lectures)

Types of mutations, Molecular basis of mutations, Mutagens— Physical and chemical, Role of mutation in crop improvement.

Suggested Readings

- 1. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics. John Wiley & sons. India 8th edition.
- 2. Snustad, D.P. and Simmons, M.J. (2010) Principles of Genetics, John Wiley & Sons, Inc., India. 5th edition.
- 3. Klug, W.S., Cummings, M.R., Speneer. C.A. (2012). Concepts of Genetics. Benjamin Cummings, USA. 10th edition.
- 4. Griffiths, A.J.F, Wessler, S.R., Carroll, S.B., Doebley. I. (2010). Introduction to Genetic Analysis. W.H. Freeman and Co., U.S.A., 10th edition.

PRACTICAL

- 1. Study of anatomical details of root, stems and leaf by preparing temporary slide and also by permanent slide or by photographs.
- 2. Study of anomalous structure of *Boerhaavia* stem and *Dracaena* stem by preparing temporary slide and by permanent slide or by photographs.
- 3. Study of parenchyma, collenchymes, sclerenchyma and different components of Xylem and Phloem by photographs.
- 4. Adaptive anatomy- xerophytes and hydrophytes by preparing temporary slides.
- 5. Testing good fit or not by chi-square method.

PRATICAL EXAMINATION

F.M. 60

1. Prepare a temporary slide of Boerhaavia stem/ Dracaena stem -20

2. Identification of 5 plants of economic botany. (only botanical name and Family Name) -10

3. Spotting 2x5 - 10
4. Viva-voice - 08
5. Record, collection & Models - 12

SKILL ENHANCING COURSE SEMESTER III PLANTS AND HUMAN WELFARE

FM- 60 time- 3hrs

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: Utility of Plants in relation to human beings, General introduction & its objectives.

UNIT 2: Common name, scientific name, methods of Cultivation and Production and uses of the following-

Cereals – Rice, Wheat, Maize

Pulses- Arhar, Moong, Lentil, Gram.

UNIT 3: Common name, scientific name, cultivation, along with the role of climatic factors and uses of the following-

Fibres- Cotton, Jute

Wood- Sal, Teak, Shisam

UNIT 4: Common name, scientific name, cultivation and uses of following-

Spices- Clove, Black peeper, Saffron, Coriander.

Medicinal plants- Neem, Amla, Tulsi, Turmeric, Garlic.

SEMESTER - IV

Core Course VIII: Molecular Biology (Credits: Theory-4, Practical -2)

THEORY Lectures: 60

Full marks: 60 Time:03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: Nucleic Acids

(2 lectures)

Historical perspective: DNA as the carrier of genetic information (Griffith's Hershey & Chase)

UNIT 2: Structure of DNA and RNA

(14 lectures)

DNA structure, Watson and Crick Model of DNA, Types of DNA, Organization of DNA of prokaryotes, RNA structure, nucleosome model, Chromatin structure – Euchromatine, heterochromatine – Constitutive & Facultative heterochromatic. Polytene and Lampbrush chromosome.

UNIT 3: Replication of DNA

(8 lectures)

Mechanism of DNA replication, Enzymes involved in DNA replication

UNIT 4: Central Dogma and Genetic Code

(6 lectures)

General account of Central dogma and genetic code.

UNIT 5: Mechanism of Transcription

(8 lectures)

Transcription in prokaryotes and transcription in Eukaryotes.

UNIT 6: Translation

(10 lectures)

Process of translation in Prokaryotes & Eukaryotes, Proteins involved in translation, Inhibitors of protein synthesis.

UNIT 7: Regulation of Gene expression

(4 lectures)

Regulation of gene expression in Prokaryotes, Operon – inducible system – Lac operon, Repressible system, Tryptophan operon.

Core Course IX :Plant Ecology and Phytogeopgraphy (Credits : Theory-4, Practical -2)

THEORY

Lectures: 60

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: Introduction

(6 lectures)

Basic concept, levels of organization, Inter-relationship between the world and the environment.

Unit 2: Soil (6 lectures)

Importance, origin, formation, composition; Physical and Chemical and biological components, Soil profile.

UNIT 3: Water

(8 lectures)

Importance, States of water in Environment, Atmospheric moisture, Precipitation types (rain, fog, snow, hail, des), Hydrological cycle.

UNIT 4: Plant Communities

(6 lectures)

Analytic and synthetic characters, Species diversity, index, Miche, Mechanism of successin – Hydrosere & Xerosere,

UNIT 5: Ecosystem

(8 lectures)

Basic concept, component of ecosystem, types of ecosystem, Grass land and Pond ecosystem, Food wave, Food chain and Ecological pyramid.

UNIT 6: Functional aspect of Ecosystem

Air pollution, Water pollution, noise pollution – Cause, effect & control, green house effect.

<u>Core Course X : Systematics</u> (<u>Credits : Theory-4, Practical -2</u>)

THEORY Lectures: 60

Full marks: 60 Time: 03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: Taxonomic Aids

(18 lectures)

Herbarium and botanical gardens, E-flora, Documentation, Flor monographs, journals, Single access & multi-access.

UNIT 2: Taxonomic Hierarchy

(8 lectures)

Concept of species, Genes and family

UNIT 3: Botanical nomenclature

(12 lectures)

Principles of International code of botanical nomenclature. Typification, anther citation, valid publication.

UNIT 4: System of classification

(8 lectures)

Bentham and Hooker's system of classification, Hutchinson's system of classification.

UNIT 5: Study of following families

(8 lectures)

- 1. Ranunculaceue
- 2. Solanaceue
- 3. Apocyanaceue
- 4. Lamiaceae
- 5. Poaceae
- 6. verberaceeae

PRACTICAL

- <u>40 marks</u>

- 6. Watson and Crick model of DNA, nucleosome model, polytene and Lambrush chromosome by photographs
- 7. Study of DNA replication mechanism by photographs
- 8. Photographs establishing nucleic acid as a genetic material.
- 9. Study of pond-ecosystem, grass land ecosystem, Food wave, Food chain by photographs.
- 10. Studies of families included in the syllabus
- 11. Study of water; air and noise pollution by photographs.

PRACTICAL EXAMINATION

F.M. 40

6.	Describe the floral characters of any one family with including floral	
	formula & floral diagram.	10
7.	Describe the Watson & Crick model of DNA by photographs.	08
8.	Spotting (5 X 2)	10
9.	Viva voce	06
10	Class record, collection, model	06

Semester: - IV (Skill Enhancement Course)

Nursery Technique

Full marks: 60 Time: 03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: (6 lectures)

Nursery – Definition, objectives and scope.

Unit 2: (6 lectures)

Cultivation of ornamental plants like cycas, palm, Aloe vera, Croton & Rhoco.

UNIT 3: (8 lectures)

Cultivation of Flowers like Rose, Hibiscus, Marigold, nerium, Chrysanthemum, Dahlia, orchid.

UNIT 4: (6 lectures)

Cultivation of vegetables like – Potato, onion, Bringal, Lady's finger, Carrot, Radish, Chilli. Storage and marketing procedures.

UNIT 5: (8 lectures)

Preparation of flower beds – Through simple illustrations.

Suggested Readings

- 5. Bose, T.K. and Mukharjeee.D. 1972 Garderning in India, Oxford and IBH publishing Co., New Delhi
- 6. Saudhu, m.K. 1989. Plant propagation, Wile Estern ltd. Bangalore.
- 7. Kumar, n. 1997 Introduction to Horticulture, Ragalakshmi publication, Nagercoil.

Edmond Musser and Andres, Fundamentals of Horticulture, McGraw Hill Book Co., New Delhi

SEMESTER- V

Core Course XI: Reproductive Biology Of Angiosperms

(Credits: Theory-4, Practical -2)

THEORY Lectures: 60

Full Marks: 60 Time:03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: ANTHER

(4 lectures)

Anther wall: structure and function, microsporogenesis.

UNIT 2: POLLEN BIOLOGY

(8 lectures)

Microgametogenesis & Palynology and scope (a brief account).

UNIT 3: OVULE

(10 lectures)

Structure, Types, Female gametophyte- megasporogenesis (monosporic, bisporic and tetrasporic) and megagametogenesis (details of *Polygonum* type; organization and structure of mature embryo sac.

UNIT 4: POLLINATION AND FERTILIZATION (8 lectures)

Pollination types and significance, path of pollen tube in pistil; double fertilization and triple fusion.

UNIT 5: ENDOSPERM

(6 lectures)

Types, development, structure and functions.

UNIT 6: EMBRYO

(6 lectures)

Development of dicot embryo and monocot embryo

UNIT 7: SEED

(4 lectures)

Structure, importance and dispersal mechanisms.

UNIT 8: POLYEMBROYONY & APOMIXES

(6 lectures)

Introduction, classification; causes & application.

Suggested Readings

- 1. Bhojwani, S.S and Bhatnagar, S.P.(2011). The Embryology of Angiosperms, Vikas Publishing House. Delhi 5th edition.
- 2. Shivanna, K.R. (2013). Pollen Biology and Biotechnology, Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- 3. Raghavan, V.(2000). Development Biology of Flowering plants, Springer, Netherlands.
- 4. Johri, B.M. I(1984), Embryology of Angiosperms, Springer- Verlag, Netherlands.

Core Course XII: PLANT PHYSIOLOGY (Credits: Theory-4, Practical -2)

THEORY Lectures: 60

Full Marks: 60 Time:03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: PLANT WATER RELATIONSHIP (14 lectures)

Water Potential, water absorption by roots, pathway of water movement, symplast, apoplast, transmembrane pathways, root pressure, guttation. Ascent of sapcohesion-tension theory. Transpiration and factors affecting transpiration, antitanspirants, mechanism of stomatal movement.

UNIT 2: MINERAL NUTRITION (10 lectures)

Essential and beneficial elements macro and micronutrients, methods criteria for essentiality, mineral deficiency symptoms, roles of essential elements, Hydroponics.

UNIT 3: TRANSLOCATION IN THE PHLOEM (10 lectures)

Mechanism of Translocation in phloem.

UNIT 4: PLANT GROWTH REGULATORS (16 lectures)

Discovery, chemical nature (basic structure), roles of Auxin, Gibberellins, Cytokinins.

UNIT 5: PHYSIOLOGY OF FLOWERING (10 lectures)

Photoperiodism, florigen concept, vernalization, seed dormancy.

Suggested Readings

1. Hopkins, W.G. and Huner, A.(2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A. 4th edition.

- 2. Taiz, L., Zeiger, E., Moller, I.M and Murphy, A (2015). Plant Physiology and development. Sinauer Associates Inc. USA 6th edition.
- 3. Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual, Narosa Publishing House, New Delhi.

PRATICAL 40 marks

- 1. Embryo Dissection
- 2. Determination of water potential of given tissue (potato tuber) by weight method.
- 3. Calculation of stomatal frequency from the two surfaces of leaves of a mesophyte.
- 4. Study of structure of anthers, types of ovules, structure of a mature embryo sac by photographs.
- 5. To determine the rate of transpiration by Farmer's and Ganong's potometer.

PRATICAL EXAMINATION F.M.- 40 Time- 3 hrs

1. To determine the rate of transpiration by Farmer's photometer/ Ganong's potometer.

OR

	Embryo Dissection (of dicot embryo)	
2.	Draw a well labeled diagram of a typical mature embryo sac	-10
3.	Spotting (2x5)	-10
4.	Class records, charts, models.	-08
5.	Viva-voice	-07

DISCIPLINE SPECIFIC ELECTIVE (DSE)

PAPER I- (Plant Breeding)

(Credits: Theory – 4, Practical-2)

Lectures :-60

Full Marks:60 Time- 3 hrs

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

- 1. Introduction and Objectives
- 2. Methods of Crop Improvement, Introduction, Selection, Hybridization
- 3. Inbreeding, Inbreeding Depression, Heterosis
- **4.** Role of Mutation, Polypoidy, Distant hybridization, Role of Biotechnology in crop improvement

Suggested Readings:-

- **1.** Singh , B.D (2005), Plant breeding; principles and Methods, Kalyani Publishers, 7th edition.
- **2.** Chaudhari, H.K. (1984), Elementary Principles of Plant Breeding Oxford-IBH, 2nd edition.
- **3.** Acquaah, G. (2007) Principles of Plant Generics & Breeding Blackwell Publishing.

DISCIPLINE SPECIFIC ELECTIVE (DSE)

PAPER II- Natural Resource Management

FM:60 TIME- 3HRS

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: Natural resources, Definition, types.Sustainable utilization- Concept, approaches, (Economical, Socio- cultural, Ecological).

UNIT 2: Land- Soil degradation and management- Water- Fresh water estuaries, wet lands, threats, and management strategies.

UNIT 3: a. Biological Resource - Biodiversity- Definition and types, Significance, threat and management.

Forest- Definition, Importance and management.

UNIT 4: Energy- Renewable and Non renewable sources.

UNIT 5: National and International efforts in resource management.

PRACTICALS (DSE- I & II)

- 1. Isolation technique of Rhizobium & Azotobacter
- 2. Cyanobacteria- study with the help of Photographs.
- 3. Methods of Organic farming through illustrations (Project work)
- 4. Identification of Plants included in syllabus with reference to scientific name and preparation of flower bud.

EXAMINATION – FULL MARKS- 40

1. Isolation technique of <i>Rhizobium/Azotobacter</i> -	10
2. Study of Cyanobacteria (with Photographs) –	05
3. Spotting- 5 specimens for identification- with scientific names.	5X2 = 10.
4. Viva- Voice	07
5. Records/ projects	08

SEMESTER-VI

Core Course XIII: PLANT METABOLISM

(Credits: Theory-4, Practical -2)

THEORY Lectures: 60

Full Marks: 60 Time:03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: CONCEPTS OF METABOLISM

(6 lectures)

Introduction, anabolic, catabolic and amphibolic pathway.

UNIT 2: CARBON ASSIMILATION

(14 lectures)

Historical background, photochemical reactions, photosynthetic electron transport, PSI, PSII, CO₂ reduction, red drop Emerson effect, Quantum Yield, C₃, C₄ Cycle, photorespiration, photophosphorylation.

UNIT 3: CARBON OXIDATION

(10 lectures)

Glycolysis, oxidative decarboxylation of pyruvate, TCA Cycle, anaerobic reactions, mitochondrial electron transport.

UNIT 4: ATP- SYNTHESIS

(8 lectures)

Mechanism of ATP synthesis, substrate level phosphorylation, (oxidative and photophosphorylation).

UNIT 5: LIPIDS METABOLISM

(8 lectures)

Introduction, saturated & unsaturated fatty acid, β -oxidation.

UNIT 6: NITROGEN METABOLISM

(8 lectures)

Biological nitrogen fixation, Reductive amination& Transamination.

Suggested Readings

- 1. Hopkins, W.G. and Huner, A.(2008). Introduction to Plant Physiology. John Wiley and Sons.
- **2.** Taiz, L., Zeiger, E., Moller, I.M and Murphy, A (2015). Plant Physiology and development. Sinauer Associates Inc. USA 6th edition.

3. Harborne, J.B. (1973). Phytochemical Methods. John Wiley & Sons. New York.

Core Course XIV: Plant Biotechnology (Credits: Theory – 4, Practical -2)

THEORY

Lectures: 60

Full Marks: 60 Time: 03 Hrs.

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

1. Plant Tissue Culture

(20 Lectures)

History: Basic requirement of tissue culture, Technique, Prospect and application, Totipotency, Organogenesis, Embryogenesis, Protoplast Isolation, micropropagation, Somatic hybridization, anther culture, pollen culture, Cyropreservation, Germplasm Conservation.

2. **Recombinant DNA Technology**

(25 Lectures)

Tools, Restriction endonucleases Eco-RI Bam H1, Sal-1, Plasmid, Cloning Vectors; Properties, (PBR-322, Cosmid, Lambda phage, Shuttle vector YEP), Ti- Plasmid, Process and application of r-DNA technology, genomic and c-DNA library, PCR technology, Blotting – Northern and southern, DNA – finger printing .

3. **Application of Bio- technology**

(15 lectures)

Pest resistant (Bt-cotton), Transgenic crops with improved quality traits (*Flavr savr* tomato, Golden rice), Impact of transgenic crops on society.

Practical

Full Marks: 40 Time: 03 Hrs.

- 1. Separation of Pigments by Chromatography method.
- 2. Experiment Showing O_2 is evolved during photo synthesis
- 3. Experiment Showing that light is essential for photo synthesis.
- 4. Experiment Showing that light is essential for photo synthesis.
- 5. Study of anther, embryo, endosperm culture, micro propagation and somatic hybridization through photographs.
- 6. Photographs from biotechnology

Practical exam F.M.- 40 Time- 3hrs

- Effect of CO₂ or light is essential for photo synthesis or O₂ is evolved during photo synthesis
 -10
- 2. Study of biotechnological experiments related to the syllabus through photographs -05
- 3. Spotting -2x5 -10
- 4. Viva voce -07
- 5. Practical record and Model -08

SUGGESTED READINGS

- 1. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 2. Gilick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology Principles and Applications of recombinant DNA. ASM Press, Washington.
- 3. Bhojwani, S.S. and Bhatnagar, S.P. (2011)., The Embryology of Angiosperms. Vikas Publication House Pvt. Ltd., New Delhi, 5th edition.
- 4. Snustad, D.P. and Simmons, M.J (2010). Principles of Genetics. John Wiley and Sons, U.K. 5TH edition.

5. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Willey & Sons Inc. U.S.A.

DISCIPLINE SPECIFIC ELECTIVE SEMESTER VI

ENVIRONMENTAL EDUCATION & WASTE MANAGEMENT

FM- 60 Time- 3hrs

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

- **UNIT 1:** Understanding Ecosystems, Population, Community, Components of Ecosystems.
- **UNIT 2:** Destruction of Ecosystem due to changing pattern of land use, Migration, Transportation, Urbanization, Industrialization, Environmental Impact Assessment.
- **UNIT 3:** Need for management of waste, safe disposal of waste.
- **UNIT 4: a.** World Conservation strategy
 - b. Legal Provisions for waste management
 - c. Swacchh Bharat Abhiyaan- Your Suggestions.
- UNIT 4: a. Global warming, Green house effects
 - b. Consequences of climate change

SUGGESTED READINGS:-

1. Ecology & Environment Sharma, P.D.- Rastogi Publication- Meerut.

DISCIPLINE SPECIFIC ELECTIVE (DSE) INDUSTRIAL ENVIRONMENTAL MICROBIOLOGY

FM- 60 Time- 3hrs

In all eight questions of equal value (15 marks each) will be set, out of which examinee shall have to answer any four questions. However, Q. No. 1 will be compulsory, consisting of ten multiple choice questions/ fill in the blanks type. Two/ three questions will be short answer type five questions each of five marks ,out of which the candidate has to answer any three. Rest four/five questions will be of long answer type.

UNIT 1: Biogas- Process & Importance- Need, Merit & scope

UNIT 2: Bioremediation, Role of microbes in waste maqnagement, Bioremediation of a) Hydrocarbons b) Industrial wastes c) Xenobiotics, Biomining, Bioreactors.

UNIT 3: Microbial flora of water- water pollution, sewage, algal bloom. BOD, COD, Eutrophication.

UNIT 4: a) Microbes in Agriculture Biological fixation, Mycorriza, Isolation of root nodule bacteria.

b) Microbial products of Industrial value- Organic acids, Alcohols, Antibiotics, Downstream processing & uses.

UNIT 5: Bioleaching – General account.

SUGGESTED READINGS:-

- **1.** Pelzar. M.J. JR. Chen E.C.S. Krieg, N.R (2010) Microbiology- An application based approach, Tata MC Graw Hill Education pvt. Ltd. New Delhi
- **2.** Tortora, G.J. Funke, B.R. Case, C.L. (2007), Microbiology, Pearson Benjamin Cummings, San Francisco, U.S.A. 9th edition

- **3.** Dubey, R.C. 2015, A. Text book of Biotechnology S. Chand & Co. Pvt. Ltd- New Delhi.
- **4.** Ramawat, K.G. & Goyal, Shaily- 2015, Comprehensive Biotechnology-S.chand & Co. N ew Delhi.

PRACTICAL - FM-40

- **1.** Study of Plant Community/ Vegetation of College Campus, by Quadrate method, Measurement of frequency and density.
- 2. Study of microbial flora of water samples.
- 3. Project on Waste management for clean, green Campus.
- **4.** Principles and functioning of instrument in Microbiology Laboratory (any two)
- **5.** Sterilization technique & Preparation of culture media.

	<u>EXAMINATION</u> –	F. M 40	Time- 3 hrs	
1.	Study of Plant Community by Quadrat method- frequency & density			15
2.	Description of one Instrument of Microbiology- Laboratory.			05
3.	Spotting – 2 photographs (from	syllabus)		05
4.	Viva voice			05
5.	Records/ Project			10